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Abstract8

Treewidth is a useful tool in designing graph algorithms. Although many NP-hard graph problems9

can be solved in linear time when the input graphs have small treewidth, there are problems which10

remain hard on graphs of bounded treewidth. In this paper, we consider three vertex selection11

problems that are W[1]-hard when parameterized by the treewidth of the input graph, namely12

the capacitated vertex cover problem, the target set selection problem and the vector dominating13

set problem. We provide two new methods to obtain FPT approximation algorithms for these14

problems. For the capacitated vertex cover problem and the vector dominating set problem, we15

obtain (1 + o(1))-approximation FPT algorithms. For the target set selection problem, we give an16

FPT algorithm providing a tradeoff between its running time and the approximation ratio.17
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1 Introduction22

We consider problems whose goals are to select a minimum sized vertex set in the input graph23

that can “cover” all the target objects. In the capacitated vertex cover problem (CVC), we24

are given a graph G with a capacity function c : V (G) → N, the goal is to find a set S ⊆ V (G)25

of minimum size such that every edge of G is covered1 by some vertex in S and each vertex26

v ∈ S covers at most c(v) edges. This problem has application in planning experiments on27

redesign of known drugs involving glycoproteins [22]. In the target set selection problem28

(TSS), we are given a graph G with a threshold function t : V (G) → N. The goal is to29

select a minimum sized set S ⊆ V (G) of vertices that can activate all the vertices of G.30

The activation process is defined as follows. Initially, all vertices in the selected set S are31

activated. In each round, a vertex v gets active if there are t(v) activated vertices in its32

neighbors. The study of TSS has application in maximizing influence in social network [24].33

Vector dominating set (VDS) can be regarded as a “one-round-spread” version of TSS, where34

the input consists of a graph G and a threshold function t : V (G) → N, and the goal is to35

find a set S ⊆ V (G) such that for all vertices v ∈ V , there are at least t(v) neighbors of v in36

S.37

Since CVC generalizes the vertex cover problem, while TSS and VDS are no easier than38

the dominating set problem2, they are both NP-hard and thus have no polynomial time39

1 An edge e can be covered by a vertex v if v is an endpoint of e.
2 It is obvious that when t(v) = 1 for every vertex v in the graph, VDS is the dominating set problem.

The reduction from dominating set to TSS can be found in [7].
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23:2 FPT Approximation using Treewidth: CVC, TSS and VDS

algorithm unless P = NP . Polynomial time approximation algorithms for capacitated vertex40

cover problem have been studied extensively [22, 10, 20, 31, 9, 33, 32]. The problem has a41

2-approximation polynomial time algorithm [20]. Assuming the Unique Game Conjecture,42

there is no polynomial time algorithm for the vertex cover problem with approximation ratio43

better than 2 [25]. As for the TSS problem, it is proved that the minimum version of TSS44

cannot be approximated to 2log1−ϵ n assuming NP ⊈ DTIME(npolylog(n)) [8]. In [11] it is45

proved that VDS cannot be approximated within a factor of c ln n for some c unless P = NP .46

Another way of dealing with hard computational problems is to use parameterized47

algorithms. For any input instance x with parameter k, an algorithm with running time48

upper bounded by f(k) · |x|O(1) for some computable function f is called FPT. A natural49

parameter for a computational problem is the solution size. The first FPT algorithm with50

running time 1.2k2 + n2 for capacitated vertex cover problem parameterized by solution size51

was provided in [23]. In [15], the authors gave an improved FPT algorithm with k3k · |G|O(1)
52

running time. However, using the solution size as parameter might be too strict for CVC.53

Note that CVC instances with sublinear capacity functions cannot have small sized solutions.54

On the other hand, TSS parameterized by its solution size is W[P]-hard 3 according to [1].55

VDS is W[2]-hard since it generalizes the dominating set problem.56

In this paper, we consider these problems parameterized by the treewidth [30] of the57

input graph. In fact, since the treewidth of a graph having k-sized vertex cover is also58

upper-bounded by k [15], CVC parameterized by treewidth can be regarded as a natural59

generalization of CVC parameterized by solution size. And it is already proved in [15] that60

CVC parameterized only by the treewidth of its input graph has no FPT algorithm assuming61

W [1] ̸= FPT . As for the TSS problem, it can be solved in nO(w) time for graphs with n62

vertices and treewidth bounded by w and has no no(
√

w)-time algorithm unless ETH fails [3].63

VDS is also W [1]-hard when parameterized by treewidth [4], however, it admits an FPT64

algorithm with respect to the combined parameter (w + k)[29].65

Recently, the approach of combining parameterized algorithms and approximation al-66

gorithms has received increased attention [17]. It is natural to ask whether there exist FPT67

algorithms for these problems with approximation ratios better than that of the polynomial68

time algorithms. Lampis [26] proposed a general framework for approximation algorithms69

on tree decomposition. Using his framework, one can obtain algorithms for CVC and VDS70

which outputs a solution of size at most opt(I) on input instance I but may slightly violate71

the capacity or the threshold requirement within a factor of (1 ± ϵ). However, the framework72

of Lampis can not be directly used to find an approximation solution for these problems73

satisfying all the capacity or threshold requirement. The situation becomes worse in the TSS74

problem, as the error might propagate during the activation process. We overcome these75

difficulties and give positive answer to the aforementioned question. For the CVC and VDS76

problems, we obtain (1 + o(1))-approximation FPT algorithms respectively.77

▶ Theorem 1. There exists an algorithm, which takes a CVC instance I = (G, c) and78

a tree decomposition (T, X ) with width w for G as input and outputs an integer k̂min ∈79

[opt(I), (1 + O(1/(w2 log n)))opt(I)] in O((w log n)O(w)nO(1)) time.80

▶ Theorem 2. There exists an algorithm running in time 2O(w5 log w)nO(1) which takes input81

an instance I = (G, t) of VDS and a tree decomposition of G with width w, finds a solution82

of size at most (1 + O(1/w)) · opt(I).83

3 The well known W-hierarchy is F P T ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ W [P ], where F P T denotes the set of
problems who admits FPT algorithms. The basic conjecture on parameterized complexity is F P T ̸= W [1].
We refer the readers to [16, 18, 13] for more details.
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For the TSS problem, we give an approximation algorithm with a tradeoff between the84

approximation ratio and its running time.85

▶ Theorem 3. There is an algorithm which on input an instance I = (G, t) of TSS and a86

tree decomposition of G with width w, finds a solution of size (1 + (w + 1)/(C + 1)) · opt(I)87

in time nC+O(1).88

Open problems and future work. Note that our FPT approximation algorithm for TSS89

has ratio equal to the treewidth of the input graph. An immediate question is whether this90

problem has (1 + o(1)-ratio parameterized approximation algorithm. We remark that the91

reduction from k-Clique to TSS in [3] does not preserve the gap. Thus it does not rule out92

constant FPT approximation algorithm for TSS on bounded treewidth graphs even under93

hypotheses like parameterized inapproximablity hypothesis (PIH) [27] or GAP-ETH [14, 28].94

In the regime of exact algorithms, we have the famous Courcelle’s Theorem which states95

that all problems defined in monadic second order logic have linear time algorithm on graphs96

of bounded treewidth [2, 12]. It is interesting to ask if one can obtain a similar algorithmic97

meta-theorem [21] for approximation algorithms.98

1.1 Overview of our techiniques99

Capacitated Vertex Cover. Our starting point is the exact algorithm for CVC on graphs100

with treewidth w in nΘ(w) time. The exact algorithm has running time nΘ(w) because it has101

to maintain a set of (w + 1)-dimension vectors d : Xα → [n] for every node α in the tree102

decomposition. One can get more insight by checking out the exact algorithm for CVC in103

Section 3. To reduce the size of such a table, Lampis’s approach [26] is to pick a parameter104

ϵ ∈ (0, 1) and round every integer to the closest integer power of (1 + ϵ). In other words,105

an integer n is represented by (1 + ϵ)x with (1 + ϵ)x ≤ n < (1 + ϵ)x+1. Thus it suffices to106

keep (log n)O(w) records for every bag in the tree decomposition. The price of this approach107

is that we can only have approximate values for records in the table. Note that the errors108

of approximate values might accumulate after addition (See Lemma 9). Nevertheless, we109

can choose a tree decomposition with height O(w2 log n) and set ϵ = 1/poly(w log n) so that110

if the dynamic programming procedure only involves adding and passing values of these111

vectors, then we can have (1 + o(1))-approximation values for all the records in the table.112

Unfortunately, in the node of forgetting a vertex v, we need to compare the value of113

d(v) and the capacity value c(v). This task seems impossible if we do not have the exact114

value of d(v). Our idea is to modify the “slightly-violating-capacity” solution, based on two115

crucial observations. The first is that, in a solution, for any vertex v ∈ V , the number of116

edges incident to v which are not covered by v presents a lower bound for the solution size.117

The second observation is that one can test if a “slightly-violating-capacity” solution can be118

turned into a good one in polynomial time. These observations are formally presented in119

Lemma 10 and 11.120

Target Set Selection and Vector Dominating Set. We observe that both of the TSS121

and VDS problems are monotone and splittable, where the monotone property states that122

any super set of a solution is still a solution and the splittable property means that for123

any separator X of the input graph G, the union of X and solutions for components after124

removing X is also a solution for the graph G. We give a general approximation for vertex125

subset problems that are monotone and splittable. The key of our approximation algorithm126

is an observation that any bag in a tree decomposition is a separator in G. As the problem is127

splittable, we can design a procedure to find a bag, and remove it, which leads to a separation128

CVIT 2016
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of G and we then deal with the component “rooted” by this bag. We can use this procedure129

repeatedly until the whole graph is done.130

1.2 Organization of the Paper131

In Section 2 the basic notations are given, and we formally define the problem we study. In132

Section 3 we present the exact algorithm for CVC. In Section 4 we present the approximate133

algorithm for CVC. In Section 5, we give the approximation algorithms for TSS and VDS.134

2 Preliminaries135

2.1 Basic Notations136

We denote an undirected simple graph by G = (V, E), where V = [n] for some n ∈ N137

and E ⊆
(

V
2
)
. Let V (G) = V and E(G) = E be its vertex set and edge set. For any138

vertex subset S ⊆ V , let the induced subgraph of S be G[S]. The edges of G[S] are139

E[S] = E(G) ∩
(

S
2
)
. For any S1, S2 ⊆ V , we use E[S1, S2] to denote the edge set between S1140

and S2, i.e. E[S1, S2] = {e = (u, v) ∈ E|u ∈ S1, v ∈ S2}. For every v ∈ V (G), we use N(v)141

to denote the neighbors of v, and d(v) := |N(v)|.142

For an orientation O of a graph G, which can be regarded as a directed graph whose143

underlying undirected graph is G, we use D+
O(v) to denote the outdegree of v and D−

O(v) its144

indegree. In a directed graph or an orientation, an edge (u, v) is said to start at u and sink145

at v. Reversing an edge is an operation, in which an edge (u, v) is replaced by (v, u).146

In a graph G = (V, E), a separator is a vertex set X such that G[V \X] is not a connected147

graph. In this case we say X separates V into disconnected parts C1, C2, ... ⊆ V \ X, where148

Ci and Cj are disconnected for all i ̸= j in G[V \ X].149

Let f : A → B be a mapping. For a subset A′ ⊆ A, let f [A′] denote the mapping with150

domain A′ and f [A′](a) = f(a), for all a ∈ A′. Let f \ a be f [A \ {a}]. For all b ∈ B, let151

f−1(b) be the set {a ∈ A′|f(a) = b}.152

Let γ ≥ 0 be a small value, we use Nγ to denote {0} ∪ {(1 + γ)x|x ∈ N}. For a, b ∈ R,153

we use a ∼γ b to denote that b/(1 + γ) ≤ a ≤ (1 + γ)b. It’s easy to see this is a symmetric154

relation. Further, we use [a]γ to denote maxx∈Nγ ,x≤a x. Notice that [a]γ ∼γ a.155

2.2 Problems156

Capacitated Vertex Cover: An instance of CVC consists of a graph G = (V, E) and a157

capacity function c : V → N on the vertices. A solution is a pair (S, M) where S ⊆ V and158

M : E → S is a mapping. If for all v ∈ S, |M−1(v)| ≤ c(v) and for all e ∈ E, M(e) ∈ e, then159

we say that S is feasible. The size of a feasible solution is |S|. The goal of CVC is to find a160

feasible solution of minimum size. An equivalent description of this problem is the following.161

Let O be an orientation of all the edges in E. O is a feasible solution if and only if for all162

v ∈ V, D−
O(v) ≤ c(v). The size of O is defined as |{v ∈ V |d−(v) > 0}|. Here we actually use163

a directed edge (u, v) to represent that {u, v} is covered by v. We mainly use this definition164

as it’s more convenient for organizing our proof and analysis.165

Target Set Selection: Given a graph G = (V, E), a threshold function t : V → N, and a166

set S ⊆ V , the set S′ ⊆ V which contains the vertices activated by S is the set that:167

S′ is the smallest set satisfying the following;168

S ⊆ S′;169

For a vertex v, if |N(V ) ∩ S′| ≥ t(v), then v ∈ S′.170
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One can find the vertices activated by S in polynomial time. Just start from S′ := S, as171

long as there exists a vertex v such that |N(v) ∩ S′| ≥ t(v), add v to S′, until no such vertex172

exists. A vertex set that can activate all vertices in V is called a target set. The goal of TSS173

is to find a target set of minimum size.174

Vector Dominating Set: Given a graph G = (V, E), a threshold function t : V → N, the175

goal of Vector Dominating Set problem is to find a minimum vertex subset S ⊆ V such that176

every vertex v ∈ V \ S satisfies |N(v) ∩ S| ≥ t(v).177

2.3 Tree Decomposition178

In this paper, we consider problems parameterized by the treewidth of the input graphs. A179

tree decomposition of a graph G is a pair (T, X ) such that180

T is a rooted tree and X = {Xα : α ∈ V (T ), Xα ⊆ V (G)} is a collection of subsets of181

V (G);182 ⋃
Xα∈X Xα = V (G);183

For every edge e of G, there exists an Xα ∈ X such that e ⊆ Xα;184

For every vertex v of G, the set {α ∈ V (T )|v ∈ Xα} forms a subtree of T .185

The width of a tree decomposition (T, X ) is maxα∈V (T ) |Xα| − 1. The treewidth of a graph186

G is the minimum width over all its tree decompositions.187

It is convenient to work on a nice tree decomposition. Every node α ∈ V (T ) in this nice188

tree decomposition is expected to be one of the following:189

(i) Leaf Node: α is a leaf and Xα = ∅;190

(ii) Introducing v Node: α has exactly one child α1, v /∈ Xα1 and Xα = Xα1 ∪ {v};191

(iii) Forgetting v Node: α has exactly one child α1, v /∈ Xα and Xα ∪ {v} = Xα1 ;192

(iv) Join Node: α has exactly two children α1, α2 and Xα = Xα1 = Xα2 .193

We refer the reader to [13, 5] for more details of treewidth and nice tree decomposition. Using194

the tree balancing technique [6] and the method of introducing new nodes, we can transform195

any tree decomposition with width w in polynomial time into a nice tree decomposition with196

width O(w), depth upper bounded by O(w2 log n), and containing at most O(nw) nodes.197

Moreover, we can add O(w) nodes so that the root α0 is assigned with an empty set Xα0 = ∅.198

We assume all the nice tree decompositions discussed in this paper satisfy these properties.199

The sets in X are called “bags”. For a node α ∈ V (T ), let Tα denote the subtree of T200

rooted by α. Let Vα ⊆ V denote the vertex set Vα = ∪α′∈V (Tα)Xα′ . Let Yα := Vα \ Xα.201

Notice that Xα0 = ∅, so Yα0 = Vα0 = V . For a node α, we use α1(, α2) to denote its possible202

children. By the definition of tree decompositions, for a join node α, Yα1 ∩ Yα2 = ∅.203

3 Exact Algorithm for CVC204

We present the exact algorithm for two reasons. The first is that one can gain some basic205

insights on the structure of the approximate algorithm by understanding the exact algorithm,206

which is more comprehensible. The other is that we need to compare the intermediate207

results of the exact algorithm and the approximate algorithm, so the total description of the208

algorithm can also be regarded as a recursive definition of the intermediate results (which209

are the sets Rα’s defined in the following).210

3.1 Definition of the Tables211

Given a tree decomposition (T, X ), we run a classical bottom-up dynamic program to solve212

CVC. That is on each node α we allocate a record set Rα. Rα contains records of the form213

CVIT 2016
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(d, k). A record (d, k) consists of two elements: a mapping d : Xα → N and an integer k ∈ N.214

At first, we present a definition of Rα by its properties. Then we define Rα according to the215

Recursive Rules. In Theorem 5 we in fact claim that these two definitions coincide.216

Let Gα denote the graph with vertex set Vα and edge set E[Vα] \ E[Xα]. We expect that217

the table Rα has the following properties.218

Expected Properties for Rα219

A record (d, k) ∈ Rα if and only if there exists O, an orientation of Gα, such that220

(1) For each v ∈ Xα, d(v) = D+
O(v) is just its out degree;221

(2) D−
O(v) ≤ c(v) for all v ∈ Yα;222

(3) |{v ∈ Yα|D−
O(v) > 0}| ≤ k ≤ |Yα|.223

Intuitively, (d, k) ∈ Rα if there exists a vertex set S ⊆ Yα and a mapping M : E[Vα]\E[Xα] →224

S ∪ Xα such that225

all edges are covered correctly, i.e. M(e) ∈ e for all e ∈ E[Vα] \ E[Xα];226

for each v ∈ Xα, there are d(v) edges from v to Yα that are covered by S, i.e. |E[{v}, Yα]∩227

∪u∈SM−1(u)| = d(v);228

M satisfies the capacity constraints for vertices in Yα, i.e. for all v ∈ Yα, |M−1(v)| ≤ c(v);229

|S| ≤ k ≤ |Yα|.230

One can imagine that S is a feasible solution for a spanning subgraph of Gα, where the231

vector d governs the edges between Xα and Yα.232

Note that the root node α0 satisfies Xα0 = ∅, and Gα0 = G. So if Rα0 is correctly233

computed, then the k values in those records in Rα0 have a one-to-one correspondence to234

all feasible solution sizes for the original instance. We output min(d,k)∈Rα0
k to solve the235

instance.236

Recursive Rules for Rα237

Fix a node α ∈ V (T ), if α is a introducing node or a forgetting node, let α1 be its child. If α238

is a join node, let α1, α2 be its children. In case α is a:239

Leaf Node. Rα = {(d, k)}, in which d is a mapping with empty domain and k := 0.240

Introducing v Node. Note that by the properties of tree decompositions, there is no edge241

between v and Yα in G. A record (d, k) ∈ Rα if and only if (d \ v, k) ∈ Rα1 and d(v) = 0.242

Join Node. (d, k) ∈ Rα if and only if there exist (d1, k1) ∈ Rα1 and (d2, k2) ∈ Rα2 such that243

for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2.244

Forgetting v Node. (d, k) ∈ Rα if and only if there exists (d1, k1) ∈ Rα1 satisfying one of245

the following conditions:246

(1) k1 = k, d1(v) = |N(v) ∩ Yα| and d1 \ v = d. In this case, v is not “included in S”. All247

the edges between v and Yα must be covered by other vertices in Yα.248

(2) k1 = k−1 and there exist ∆(v) ⊆ N(v)∩Xα and A ∈ [|N(v)∩Yα|−c(v)+|∆(v)|, |N(v)∩249

Yα|] such that d1(v) = A, d1(u) = d(u) − 1 for all u ∈ ∆(v), and d1(u) = d(u) for250

all u ∈ Xα1 \ (∆(v) ∪ {v}). In this case, v is “included in S”. We enumerate a set251

∆(v) ⊆ N(v)∩Xα of edges between v and Xα and let v cover these edges. Note that for252

a record (d1, k1) ∈ Rα1 , there are |N(v) ∩ Yα| − d1(v) edges that are covered by v. To253

construct (d, k) from (d1, k1), we need to check that c(v) ≥ |∆(v)|+ |N(v)∩Yα|−d1(v),254

which is implicitly done by the setting d1(v) = A ≥ |N(v) ∩ Yα| − c(v) + |∆(v)|.255

▶ Remark 4. In fact, one can find many different ways to define the dynamic programming256

table for CVC. We use this definition because we want to upper bound the values of records257
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in Rα by the size of solution (Lemma 10), so we need to record “outdegrees” rather than258

“indegrees” or “capacities”.259

Valid certificate. Notice that all the rules are of the form (d1, k1) ∈ Rα1 ⇒ (d, k) ∈ Rα260

or (d1, k1) ∈ Rα1 ∧ (d2, k2) ∈ Rα2 ⇒ (d, k) ∈ Rα, thus a rule can actually be divided in261

to two parts: we found a “valid certificate” (d1, k1) ∈ Rα1 (and (d2, k2) ∈ Rα2 , for join262

nodes), then we add a “product” (d, k) ∈ Rα based on the certificate. It’s easy to see that,263

every record in Rα1 can be a valid certificate in introducing nodes, and every pair of records264

((d1, k1), (d2, k2)) ∈ Rα1 × Rα2 can be a valid certificate in join nodes. But in forgetting v265

nodes, we further require that d1(v) satisfies some condition. To be specific, in a forgetting266

node α1 we say (d1, k1) ∈ Rα1 is valid if it satisfies the following condition:267

(⋆) d1(v) = |N(v) ∩ Yα| or |N(v) ∩ Yα| − c(v) + |∆(v)| for some ∆(v) ⊆ N(v) ∩ Xα.268

▶ Theorem 5. The set {Rα : α ∈ V (T )} can be computed by the recursive rules above in269

time nw+O(1), and the Expected Properties are satisfied.270

The proof of the correctness of these rules are presented in Appendix A. As |Rα| ≤ nw+2 for271

all α ∈ V (T ) and the enumerating ∆(v) procedure in dealing with a forgetting node runs272

in time wO(w), it’s not hard to see that this algorithm runs in time nw+O(1) (for w small273

enough compared to n).274

4 Approximation Algorithm for CVC275

Let ϵ be a small value to be determined later. We try to compute an approximate record276

set R̂α for each node α, still using bottom-up dynamic programming like what we do in the277

exact algorithm. An approximate record is a pair (d̂, k̂), where k̂ ∈ N and d̂ is a mapping278

from Xα to Nϵ = {0} ∪ {(1 + ϵ)x|x ∈ N}. As we can see, d̂ can take non-integer values.279

Height of a Node The height h of a node α is defined by the length of the longest path280

from α to a leaf which is descendent to α. By this definition, the height of a node is 1 plus281

the maximum height among its children’s. Let the height of the root node be h0. According282

to the property of nice tree decompositions, h0 is at most O(w2 log n).283

Let ϵh, δh be two variables (which are functions of h, n and w) to be determined later.284

h-close records. If an exact record (d, k) and an approximate record (d̂, k̂) satisfy285

d(v) ∼ϵh
d̂(v) for all v ∈ Xα and k ∼δh

k̂, then we say these two records are h-close.286

We expect that for each node α, R̂α satisfies the following. Let the height of α be h.287

(A) If (d, k) ∈ Rα, then there exists (d̂, k̂) ∈ R̂α which is h-close to (d, k).288

(B) If (d̂, k̂) ∈ R̂α, then there exists (d, k) ∈ Rα which is h-close to (d̂, k̂).289

After R̂α0 is correctly computed (i.e. satisfying (A) and (B)), we output the value k̂min =290

(1 + δh0) min(d̂,k̂)∈R̂α0
k̂. Let OPT be the size of the minimum solution, which equals to291

min(d,k)∈Rα0
k. We claim that k̂min ∈ [OPT, (1 + δh0)2OPT ].292

Proof. By property (B), we have OPT ≤ (1 + δh0) min(d̂,k̂)∈R̂α0
k̂. By property (A), we have293

min(d̂,k̂)∈R̂α0
k̂ ≤ (1 + δh0)OPT . The claim follows by combining these two inequalities. ◀294

We need the following procedure to test in polynomial time if a sub-problem is solvable when295

we are allowed to use all vertices to cover the edges.296

▶ Lemma 6. Testing whether (d, |Yα|) ∈ Rα for any d can be done in nO(1) time.297
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Proof. Construct a directed graph with vertex set {s, t} ∪ (E[Vα] \ E[Xα]) ∪ Vα. For each298

e ∈ (E[Vα] \ E[Xα]) add an edge (s, e) with capacity 1. For each e = (u, v) ∈ (E[Yα] \ E[Xα])299

add an edge (e, u) and an edge (e, v) both with capacity 1. For each v ∈ Xα add an edge300

(v, t) with capacity |N(v) ∩ Yα| − d(v). For each v ∈ Yα add an edge (v, t) with capacity301

c(v). We claim that (d, |Yα|) ∈ Rα if and only if there is a flow from s to t with value302

|E[Vα] \ E[Xα]|. For the ’if’ part, notice that by the well-known integrality theorem for303

network flow, there exists a integral flow with the same value. Every integral flow with304

this value can be transform to an O as expected in the Expected Properties: An edge305

e ∈ E[Yα] \ E[Xα] is oriented so that it sinks at vertex v if (e, v) has flow value 1, then306

for each vertex v ∈ Xα, reverse some edges in E[{v}, Yα] so that D+
O(v) = d(v), if the flow307

carried in (v, t) is less than |N(v) ∩ Yα| − d(v). One can construct a flow with the value308

based on an orientation O, too. Thus the ’only if’ part is easy to see, too. ◀309

We first define {R̂α : α ∈ V (T )} using the following Recursive Rules. Then we310

prove that these sets satisfy the properties (A) and (B). The basic idea of our approximate311

algorithm is to run the exact algorithm in an “approximate way”. For a rule formed as312

(d̂1, k̂1) ∈ R̂α1 ⇒ (d̂, k̂) ∈ R̂α or (d̂1, k̂1) ∈ R̂α1 ∧ (d̂2, k̂2) ∈ R̂α2 ⇒ (d̂, k̂) ∈ R̂α, we also call313

(d̂1, k̂1) (and (d̂2, k̂2)) the certificate while (d̂, k̂) is the product.314

Recursive Rules for R̂α315

Fix a node α ∈ V (T ) with height h, in case α is a:316

Leaf Node. R̂α = {(d̂, k̂)}, in which d̂ is a mapping with empty domain and k̂ = 0.317

Introducing v Node. A record (d̂, k̂) ∈ R̂α if and only if (d̂ \ v, k̂) ∈ R̂α1 and d̂(v) = 0.318

Join Node. (d̂, k̂) ∈ R̂α if and only if there exists (d̂1, k̂1) ∈ R̂α1 , (d̂2, k̂2) ∈ R̂α2 such that319

for each v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and k̂ = k̂1 + k̂2.320

Forgetting v Node. This case is the most complicated. Let’s think this way: we pick321

(d̂1, k̂1) ∈ R̂α1 and based on it we try to construct (d̂, k̂) to add into R̂α. Notice that in322

the exact algorithm, not every (d1, k1) ∈ Rα1 can be used to generate a corresponding323

product (d, k) ∈ Rα — it has to be the case that d1(v) = |N(v) ∩ Yα| or d1(v) ≥324

|N(v) ∩ Yα| − c(v) + |∆(v)|, which is what we called to be a valid certificate. We have to325

test both the validity of the certificate and its exact counterpart using an indirect way.326

So there are three issues we need to address:327

(a) The requirement for (d̂1, k̂1) being valid, i.e. satisfying the “approximate version” of328

condition (⋆);329

(b) There exists a valid exact counterpart (d1, k1) of (d̂1, k̂1) satisfying condition (⋆);330

(c) How to construct (d̂, k̂).331

Formally, suppose we have (d̂1, k̂1) ∈ R̂α1 , we consider two cases:332

(1) v is not “included”.333

(1a) See if d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|;334

(1b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}335

and dt(v) = |N(v) ∩ Yα| (This is polynomial-time tractable by Lemma 6);336

(1c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂ = d̂1 \ v, k̂ = k̂1.337

(2) v is “included”. We enumerate ∆(v) ⊆ N(v) ∩ Xα and integer A satisfying A ∈338

[|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|].339

(2a) See if d̂1(v) ≥ A/(1 + ϵh−1);340

(2b) See if (dt, |Yα1 |) ∈ Rα1 , where dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ for all u ∈ Xα1 \ {v}341

and dt(v) = A (By Lemma 6, this is still polynomial-time tractable);342
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(2c) If (a) and (b) are satisfied, then add (d̂, k̂) to R̂α, where d̂(u) = d̂1(u) for all343

u ∈ Xα \ ∆(v), d̂(u) = [d̂(u) + 1]ϵ for all u ∈ ∆(v), k̂ = k̂1 + 1.344

▶ Theorem 7. Set ϵ = 1
(w2 log n)3 , ϵh = 2hϵ and δh = 4(h + 1)hϵ. Suppose n is large enough.345

When the dynamic programming is done, for all α, R̂α satisfies property (A) and (B).346

Proof. (of Theorem 1) According to Theorem 7 and the above discussion, we imme-347

diately get k̂min ∈ [OPT, (1 + δh0)2OPT ]. By the property of nice tree decomposition,348

h0 is at most O(w2 log n), thus k̂min ∈ [OPT, (1 + O(1/(w2 log n)))2OPT ] = [OPT, (1 +349

O(1/(w2 log n)))OPT ].350

The space we need to memorize each R̂α is O((w6 log4 n)wnO(1)). Computing a leaf/in-351

troduce/join node we need O((w6 log4 n)2wnO(1)) time. In a forgetting node, we may need to352

enumerate some set ∆(v) ⊆ N(v) ∩ Xα, which requires time O(2|Xα|) = O(2w+1). So com-353

puting a Forgetting node requires O((w6 log4 n)w2wnO(1)) time. The tree size is polynomial,354

so the total running time is FPT. ◀355

To prove Theorem 7, we need a few lemmas. The proof of Lemma 8 and Lemma 9 are356

presented in Appendix B.357

▶ Lemma 8. If (d, k) ∈ Rα for some node α, then for every (d′, k′) with d(v) ≥ d′(v) for all358

v ∈ Xα and k′ satisfying k ≤ k′ ≤ |Yα|, we have (d′, k′) ∈ Rα.359

▶ Lemma 9. Let a, b, a′, b′ ∈ R, h ∈ N+, ϵh ∈ (0, 0.01), a′ ∼ϵh
a and b′ ∼ϵh

b. Then we have360

[a′ + b′]ϵ ∼ϵh+1 (a + b).361

▶ Lemma 10. For all (d, k) ∈ Rα and v ∈ Xα, k ≥ d(v).362

Proof. Let O be the orientation. Let N+(v) = {u ∈ V (G) : (v, u) ∈ E(G)} be v’s out363

neighbor. By definition, we have d(v) = |N+(v)| ≤ |{u ∈ Yα|D−
O(u) > 0}| ≤ k. ◀364

▶ Lemma 11. Fix some (d, k) ∈ Rα, v ∈ Xα and some integer p > 0 satisfying k + p ≤ |Yα|.365

Let dm : Xα → N be a function such that dm(v) = d(v) + p and dm \ v = d \ v. We have366

(dm, |Yα|) ∈ Rα if and only if (dm, k + p) ∈ Rα.367

Proof. On one hand, the ’if’ part is obvious by Lemma 8. On the other hand, we prove that368

(dm, |Yα|) ∈ Rα implies (d′, k + 1) ∈ Rα, where d′(v) = d(v) + 1, d′ \ v = d \ v. Then we369

can repeatedly increase the value of k by 1 for p times to obtain the ’only if’ part. Let the370

orientation corresponding to (d, k) and (dm, |Yα|) be O1, O2 respectively. Now let G′ be a371

graph with vertex set Yα ∪ {v}. A directed edge (x, y) is in G′ if and only if (x, y) ∈ O2 and372

(y, x) ∈ O1.373

By picking O1 so that the number of edges in G′ is minimized, we can assume that G′
374

contains no cycle. Otherwise if G′ contains a cycle, we can reverse every edge along the cycle375

in O1 so that it’s still a valid orientation for (d, k) but the number of edges in G′ decreases.376

As D+
O2

(v) > D+
O1

(v), there exists an non-empty path in G′ starting from v ending at,377

say, v′ ̸= v such that v′ has no out edge in G′. This implies D−
O1

(v′) ≤ D−
O2

(v′) − 1, or v′ will378

have an out edge in G′. We reverse the edges along this path in O1. Let the new orientation379

be O3. D−
O3

(v′) ≤ D−
O1

(v′) + 1 ≤ D−
O2

(v′) ≤ c(v). Moreover, {u|D−
O3

(u) > 0} \ {u|D−
O1

(u) >380

0} ⊆ {v′}. Thus, O3 is a valid orientation for (d′, k + 1). ◀381
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Theorem 7 Proof Sketch382

Due to space limit, the complete proof is presented in Appendix B.383

We use induction on nodes. It’s easy to see that leaf nodes satisfy property (A) and (B),384

because Rα = R̂α for every leaf node. Fix a node α of height h, by induction, we assume385

that every node descendent to α satisfies (A) and (B). We only need to prove that α satisfies386

both (A) and (B). We make a case discussion based on the type of α. The case where α is a387

forgetting node is the most complicated and requires lemma 10 and 11. The other two types388

follow Lampis’ framework.389

To show α satisfies (A), we need to prove the existence of some (d̂, k̂) ∈ R̂α for any390

given (d, k) ∈ Rα such that (d̂, k̂) and (d, k) are h-close. This is done by first picking up the391

certificate of (d, k), that is the record (d1, k1) ∈ Rα1 (or a pair of records in the case α is a392

join node, we omit join node case in the following sketch) which “produces” (d, k) based on393

recursive rules for Rα. Then by induction hypothesis, there is an (h − 1)-close record (d̂1, k̂1)394

in R̂α1 . If α is not a forgetting node, then according to recursive rules for R̂α, there exists395

(d̂, k̂) ∈ R̂α. We prove that (d̂, k̂) and (d, k) are h-close. If α is a forgetting node, then we396

verify (1b) or (2b) by applying Lemma 8 on (d1, k1).397

To show α satisfies (B), if α is not a forgetting node, then we pick up and compare some398

records in a different order: We start from (d̂, k̂) ∈ R̂α; Then we pick (d̂1, k̂1) ∈ R̂α1 according399

to recursive rules for R̂α; Next we pick (d1, k1) ∈ Rα1 based on induction hypothesis; Finally400

we find out (d, k) ∈ Rα using recursive rules for Rα. If α is a forgetting node, suppose the401

record (d̂, k̂) ∈ R̂α is produced by (d̂1, k̂1). The main idea is to apply Lemma 11 on (dt, |Yα1 |),402

the record verified by (1b) or (2b), and (d1, k1), the record (h − 1)-close to (d̂1, k̂1), so as to403

show the existence of some (d, k) ∈ Rα. At the same time we use Lemma 10 to bound k.404

5 Approximation algorithms for TSS and VDS405

In this section, we introduce the vertex subset problem which is a generalization of many406

graph problems. Then we present a sufficient condition for the existence of parameterized407

approximation algorithms for such problems parameterized by the treewidth. Finally, we408

apply our algorithm to Target Set Selection (TSS) and Vector Dominating Set (VDS), which409

are both vertex subset problems satisfying this condition. The definitions bellow are inspired410

by Fomin, et al. [19].411

▶ Definition 12 (Vertex Subset Problem). A vertex subset problem Φ takes a string I ∈ {0, 1}∗
412

as an input, which encodes a graph GI = (VI , EI). Φ is identified by a function FΦ which413

maps a string I ∈ {0, 1}∗ to a family of vertex subsets of VI , say FΦ(I) ⊆ 2VI . Any vertex414

set in FΦ(I) is a solution of the instance I. The goal is to find a minimum sized solution.415

▶ Definition 13 (Partial Vertex Subset Problem). Let Φ be a vertex subset problem. The416

partial version of Φ takes a string I ∈ {0, 1}∗ appended with a vertex subset U ⊆ VI as input.417

We call such a pair (I, U) a partial instance of Φ. Any vertex set W ⊆ VI \ U is a solution if418

and only if W ∪ U ∈ FΦ(I). Still, the goal is to find a minimum sized solution.419

We consider the following conditions of a vertex subset problem Φ.420

Φ is monotone, if for any instance I, S ∈ FΦ(I) implies for all S′ satisfying S ⊆ S′ ⊆ VI ,421

S′ ∈ FΦ(I).422

Φ is splittable, if: for any instance I and any separator X of GI which separates VI \ X423

into disconnected parts V1, V2, ..., Vp, if S1, S2, ..., Sp are vertex sets such that Si is a424

solution for the partial instance (I, VI \ Vi), ∀1 ≤ i ≤ p, then X ∪
⋃

1≤i≤p Si is a solution425

for I.426
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It is trivial to show the monotonicity for Target Set Selection and Vector Dominating Set.427

To see that they are splittable, observe that given an instance I = (G, t) of Vector Dominating428

Set for example, fix some X ⊆ V (G), a set S containing X is a solution for I if and only if429

S \ X is a solution for I ′ = (G′, t′), where G′ = G[V \ X] and t′(v) = t(v) − |N(V ) ∩ X| for430

all v ∈ V \ X. If X is a separator, then the graph G′ is not connected, and the union of any431

solutions of each component in G′, with X together forms a solution of I. This observation432

also works for Target Set Selection.433

The main theorem in this section is to show the tractability, in the sense of parameterized434

approximation, of monotone and splittable vertex subset problems with bounded treewidth.435

▶ Theorem 14. Let Φ be a vertex selection problem which is monotone and splittable. If there436

exists an algorithm such that on input a partial instance of Φ appended with a corresponding437

nice tree decomposition with width w, it can run in time f(ℓ, w, n) and438

either output the optimal solution, if the size of it is at most ℓ;439

or confirm that the optimal solution size is at least ℓ + 1440

then there exists an approximate algorithm for Φ with ratio 1 + (w + 1)/(l + 1) and runs in441

time f(l, w, n) · nO(1), for all l ∈ N.442

We provide a trivial algorithm for the partial version of Target Set Selection. Given a443

partial instance (I = (G, t), U), we search for a solution of size at most ℓ by brute-force. This444

takes time f(ℓ, w, n) = nℓ+O(1). Setting l := C in Theorem 14, we simply get the following.445

▶ Corollary 15. (Restated version of Theorem 3) For all constant C, Target Set Selection446

admits a 1 + (w + 1)/(C + 1)-approximation algorithm running in time nC+O(1).447

As mentioned before, Raman et al.[29] showed that VDS is W [1]-hard parameterized by448

w, but FPT with respect to the combined parameter (k + w) where k is the solution size.449

The running time of their algorithm is kO(wk2)nO(1). A partial instance (I, U) of VDS can450

be transformed to an equivalent VDS instance, in which the input graph is G[VI \ UI ], so451

this algorithm can also be used for the partial version of VDS. Set l := w2 in Theorem 14,452

we get Corollary 16.453

▶ Corollary 16. (Restated version of Theorem 2) Vector Dominating Set admits a 1 + (w +454

1)/(w2 + 1)-approximation algorithm running in time 2O(w5 log w)nO(1).455

5.1 The Algorithm Framework456

To prove Theorem 14, we introduce the concept of l-good node.457

▶ Definition 17 (l-good Node). Let I be an instance of a vertex selection problem Φ and458

(T, X ) be a nice tree decomposition of any subgraph of GI . A node α ∈ V (T ) is an l-good459

node if the partial instance (I, VI \ Yα) admits a solution of size at most l.460

For a node α, let N−
α denote the set of all children of α. We post the pseudocode of461

our algorithm in Algorithm 1. Figure 1 in Appendix C illustrates how the sets defined in462

Algorithm 1 are related. Algorithm 1 solves the partial version of Φ. For the original version,463

when we get an instance I, we just create an equivalent partial instance (I, ∅) appended with464

a nice tree decomposition (T, X ) and an integer l, then we run Solve((I, ∅), (T, X ), l). The465

analyze of Algorithm 1 is presented in Appendix C.466

Main idea of Algorithm 1: Let Alg be an algorithm solving partial instances in time467

f(l, w, n). Given a partial instance (I, D) and a nice tree decomposition (T, X ) on G[I \ D],468

we run Alg to test the goodness of each node. If the root node is l-good, then (I, D) has469
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a solution with size at most l, we use Alg to find the optimal solution. If a leaf node is470

not l-good then by monotonicity I has no solution4.Otherwise, we can pick a lowest node α471

which is not l-good. Then all its children are l-good. Such a node has nice properties.472

On one hand, by the l-goodness of α’s children, the partial instances (I, VI \ Yαc
) can be473

optimally solved by Alg for each αc a child of α. Adding Xαc and the optimal solution474

Eαc
for (I, VI \ Yαc

) into the solution enables us to “discard” the whole subtree rooted475

by αc and the corresponding vertices, i.e. Vαc ;476

On the other hand, as α is not l-good, by the splittable and monotone properties, we can477

deduce that the optimal solution S∗ has an (l + 1)-lower-bounded intersection with Yα478

i.e. |S∗ ∩ Yα| ≥ l + 1.479

Based on these properties, the algorithm iteratively finds one such node α and includes480

Xαc
∪ Eαc

for its every child αc into the solution, then “removes” Vαc
from the graph. Once481

we repeat this procedure, the optimal solution size decreases by at least |S∗ ∩ (
⋃

αc
Vαc)| ≥482

|S∗ ∩ Yα| ≥ l + 1. For each αc, we use Alg to find the optimal solution Eαc
, so in each Yαc

483

we select at most |S∗ ∩ Yαc | vertices. The “non-optimal” part is
⋃

αc
Xαc , which is at most484

O(w) = O(w/l)|S∗ ∩ (
⋃

αc
Vαc

)|. Therefore, the approximation ratio is upper bounded by485

1 +
|
⋃

αc
Xαc |

l+1 ≤ 1 + O(w/l).486

Algorithm 1 Subprocess Solve()

Input: A partial instance (I, D) of Φ, a nice tree decomposition (T, X ) of GI [VI \ D]
with width w, l ∈ N an integer.

Output: A solution S to (I, D), or ’there exists no solution’.

1 for each node α do
2 Use Alg to test if α is an l-good node;
3 if α is l-good then
4 Eα := the minimum solution for (I, VI \ Yα);
5 end
6 end
7 if the root α0 is l-good then
8 Return Eα0 ;
9 end

10 Find a node α which is not l-good with minimum height;
11 if α is a leaf node then
12 Return ’there exists no solution’;
13 end
14 E′ := ∅;
15 F := ∅;
16 for each αc ∈ N−

α do
17 E′ := E′ ∪ Eαc ∪ Xαc ;
18 F := F ∪ Vαc

;
19 end
20 Find a nice tree decomposition (T ′, X ′) for GI [VI \ (D ∪ F )];
21 Return E′ ∪ Solve((I, D ∪ F ), (T ′, X ′), l);

4 By our definition of vertex subset problem, the set of solutions can be empty. However any instance of
TSS or VDS admits at least one solution which is the whole vertex set.
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so no record is missed. Fix a node α, assume that every node descendent to it is consistent.588

To avoid being misleading, we mean (d, k) is added to Rα by the algorithm when we say589

(d, k) ∈ Rα, and we say (d, k) is as expected if there exists O satisfying the properties.590

The proof then contains the ’if’ part and the ’only if’ part. For the ’if’ part we have some591

satisfying O, (d, k) and aim to prove (d, k) ∈ Rα; for the ’only if’ part we have (d, k) ∈ Rα592

and aim to prove the existence of a satisfying O. We discuss the type of α.593

A.1 The ’If’ Part594

Introducing v Node595

Notice that v is an isolated vertex in Gα (which does not contain E[Xα]) and Gα1 =596

Gα[Vα \ {v}]. Let O1 be the orientation for Gα1 , where every edge are oriented just the same597

as that in O. Let (d1, k1) be such that d1 = d \ v, k1 = k. It’s easy to see that (d1, k1) and O1598

satisfy the properties, so (d1, k1) ∈ Rα1 . As v is an isolated vertex in Gα, d(v) = D+
O(v) = 0,599

so (d, k) ∈ Rα.600

Join Node601

Let O1, O2 be the orientation for Gα1 , Gα2 which are consistent to O. By the Expected602

Properties, we have that d(v) = D+
O(v) = D+

O1
(v) + D+

O2
(v) for all v ∈ Xα, and |{v ∈603

Yα1 |D−
O1

(v) > 0}| + |{v ∈ Yα2 |D−
O2

(v) > 0}| = |{v ∈ Yα|D−
O(v) > 0}| ≤ k ≤ |Yα| =604

|Yα1 | + |Yα2 |. Let (d1, k1) ∈ Rα1 and (d2, k2) ∈ Rα2 be the records corresponding to O1, O2,605

where606

k1 = min{|{v ∈ Yα1 |D−
O1

(v) > 0}| + k − |{v ∈ Yα|D−
O(v) > 0}|, |Yα1 |},607

k2 = |{v ∈ Yα2 |D−
O2

(v) > 0}| + min{0, k − |Yα1 |}.608

It’s easy to see that for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2, and (d1, k1) ∈609

Rα1 , (d2, k2) ∈ Rα2 . Thus (d, k) ∈ Rα.610

Forgetting v Node611

Notice that E(Gα) = E(Gα1) ∪ E[v, Xα]. There are two cases. The first case is that612

D−
O(v) = 0 and k ≤ |Yα| − 1 (i.e. we can regard v as “not selected”), which means D+

O(v) =613

|N(v)|. Let O1 be the orientation for Gα1 which is consistent to O. Let (d1, k1) ∈ Rα1 be614

the record corresponding to O1, where615

k1 = k ∈ [|{u ∈ Yα|D−
O(u) > 0}|, |Yα| − 1] = [|{u ∈ Yα1 |D−

O1
(u) > 0}|, |Yα1 |].616

For all u ∈ Xα ∩ N(v), the edge (u, v) is oriented so that it sinks at u, so d(u) = D+
O(u) =617

D+
O1

(u) = d1(u). Thus d = d1 \ v. And d1(v) = D+
O1

(v) = |N(v) ∩ Yα|. So (d, k) ∈ Rα.618

The other case is that D−
O(v) > 0 or k = |Yα| (i.e. v is “selected”). Let N−

O (v) be v’s619

in-neighbors in O (D−
O(v) = |N−

O (v)|). Let ∆(v) = N−
O (v) ∩ Xα. Let (d1, k1) be such that620

k1 = k − 1, for all u ∈ ∆(v), d1(u) = d(u) − 1; for all u ∈ Xα \ ∆(v), d1(u) = d(u) and621

d1(v) = |Yα ∩ N(v) \ N−
O (v)|. Let A := d1(v), then as (d, k) and O satisfy property (2),622

A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]. Let O1 be an orientation for Gα1 which is623

consistent to O. And for a vertex u ∈ Xα, orient the edge (u, v) so that it sinks at v if624

u ∈ ∆(v); at u if u /∈ ∆(v). It’s easy to see that O1, (d1, k1) satisfy the properties, notice625

that if D−
O(v) > 0 then |{u ∈ Yα1 |D−

O1
(u) > 0}| = |{u ∈ Yα|D−

O(u) > 0}| − 1, if k = |Yα| then626

k1 = k − 1 = |Yα1 |. In both cases |{u ∈ Yα1 |D−
O1

(u) > 0}| ≤ k ≤ |Yα1 |, thus (d1, k1) ∈ Rα1 .627

Moreover, based on the recursive rules, it’s easy to verify that (d1, k1) is a certificate for628

(d, k). So (d, k) ∈ Rα.629
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A.2 The ’Only If’ Part630

Introducing v Node According to recursive rules, there exists (d1, k1) ∈ Rα1 , where631

d1 = d \ v, k1 = k. Let O1 be the orientation for Gα1 corresponding to (d1, k1). Let O632

be the orientation for Gα, which is consistent to O1 (notice that the edge sets of Gα and633

Gα1 are the same). Consider the Expected Properties. For all u ∈ Xα \ {v}, d(u) =634

d1(u) = D+
O1

(u) = D+
O(u), d(v) = 0 = D+

O(v); for all u ∈ Yα, D−
O(u) = D−

O1
(u) ≤ c(u);635

k = k1 ≥ |{u ∈ Yα1 |D−
O1

(u) > 0}| = |{u ∈ Yα|D−
O(u) > 0}|. So (d, k) is as expected.636

Join Node According to recursive rules, there exists (d1, k1) ∈ Rα1 and (d2, k2) ∈ Rα2 ,637

where d1(u) + d2(u) = d(u) for all u ∈ Xα, and k1 + k2 = k. Notice that Gα1 ∪ Gα2 = Gα,638

and E(Gα1) ∪ E(Gα2) = ∅. Let O1 and O2 be the orientations corresponding to (d1, k1)639

and (d2, k2) respectively. Let O be the orientation for Gα such that the edges in E(Gα1)640

are oriented as in O1 and those in E(Gα2) are oriented as in O2. Consider the Expected641

Properties. For all u ∈ Xα, d(u) = d1(u) + d2(u) = D+
O1

(u) + D+
O2

(u) = D+
O(u); for all642

u ∈ Yα1 , D−
O(u) = D−

O1
(u) ≤ c(u) and for all u ∈ Yα2 , D−

O(u) = D−
O2

(u) ≤ c(u); As |{u ∈643

Yα|D−
O(u) > 0}| = |{u ∈ Yα1 |D−

O1
(u) > 0}| + |{u ∈ Yα2 |D−

O2
(u) > 0}|, |Yα| = |Yα1 | + |Yα2 |644

and k = k1 + k2, we have |{u ∈ Yα|D−
O(u) > 0}| ≤ k ≤ |Yα|.645

Forgetting v Node According to recursive rules, there are two cases.646

(1) There exists (d1, k1) ∈ Rα1 where k = k1, d1(v) = |N(v) ∩ Yα| and d1 \ v = d. Let the647

corresponding orientation be O1. Notice that E(Gα) \ E(Gα1) = N(v) ∩ Xα. Let O be648

an orientation for Gα, where the edges in E(Gα1) are oriented as in O1 and the edges in649

E[v, Xα] are oriented so that they all start at v. Then for all u ∈ Xα, d(u) = d1(u) =650

D+
O1

(u) = D+
O(u); for all u ∈ Yα \ v, D−

O(u) = D−
O1

(u) ≤ c(u) and D−
O(v) = 0 ≤ c(v);651

k = k1 ∈ [|{u ∈ Yα1 |D−
O1

(u) > 0}|, |Yα1 |] = [|{u ∈ Yα1 |D−
O(u) > 0}|, |Yα| − 1].652

(2) There exists ∆(v) ⊆ N(v)∩Xα, A ∈ [|N(v)∩Yα|−c(v)+ |∆(v)|, |N(v)∩Yα|], and (d1, k1)653

such that k1 = k − 1, d1(v) = A, ... (as described in the recursive rule). Let O1 be the654

corresponding orientation. Let O be an orientation for Gα, where the edges in E(Gα1)655

are oriented as in O1; for an edge (v, u) where u ∈ N(v) ∩ Xα, if u ∈ ∆(v) then orient656

the edge so that it sinks at v, otherwise orient it so that it sinks at u. First let’s check657

the indegree of v in O. D−
O(v) = D−

O1
(v) + |∆(v)| = |N(v) ∩ Yα| − A + |∆(v)| ≤ c(v). For658

all u ∈ ∆(v), d(u) = d1(u) + 1 = D+
O1

(u) + 1 = D+
O(u) (v becomes its new out-neighbor);659

for all u ∈ Xα \ ∆(v), d(u) = d1(u) = D+
O1

(u) = D+
O(u); for all u ∈ Yα \ {v}, D−

O(u) =660

D−
O1

(u) ≤ c(u); |{u ∈ Yα|D−
O(u) > 0}| ≤ |{u ∈ Yα1 |D−

O1
(u) > 0}|+1 and |Yα| = |Yα1 |+1,661

so |{u ∈ Yα|D−
O(u) > 0}| ≤ k ≤ |Yα|.662

B Proof of Theorem 7663

Before the main proof, we prove Lemma 8 and Lemma 9.664

Proof. (Lemma 8) Let O be the orientation for (d, k). For each v, we arbitrarily select665

d(v) − d′(v) out neighbors of v and reverse each edge between one selected neighbor and v.666

Let the obtained orientation be O1. We show that O1 and (d′, k′) satisfies the properties. (1)667

and (3) are trivial. To see (2), observe that D−
O1

(v) ≤ D−
O(v) for all v ∈ Yα. ◀668

Proof. (Lemma 9) a′ + b′ ∈ [a/(1 + ϵh) + b/(1 + ϵh), a(1 + ϵh) + b(1 + ϵh)], that is669

(a′ + b′) ∼ϵh
(a + b). As [a′ + b′]ϵ ∼ϵ (a′ + b′), we have [a′ + b′]ϵ ∼ϵh+1 (a + b). ◀670

In the following we start the main proof. Leaf nodes satisfy property (A) and (B) since671

Rα = R̂α for a leaf node α. Fix a node α of height h, by induction, we assume that every672

node descendent to α satisfies (A) and (B). Now we prove α satisfies both (A) and (B).673
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Proof of (A)674

Recall that we have some (d, k) ∈ Rα now and we aim to show the existence of some675

(d̂, k̂) ∈ R̂α which is h-close to (d, k). The case for leaf node is trivial. There are three other676

cases:677

Introducing v Node. Suppose α is an introducing v node and α1 is its child, then we have678

a certificate (d1, k1) ∈ Rα1 , where d1 = d \ v, k1 = k. By the induction hypothesis, there679

exists a record (d̂1, k̂1) ∈ R̂α1 which is (h−1)-close to (d1, k1). By the recursive algorithm680

for R̂, there exists (d̂, k̂) ∈ R̂α, where d̂ \ v = d̂1, d̂(v) = 0 and k̂ = k̂1. Note that for681

all u ∈ Xα \ {v}, d̂(u) = d̂1(u) ∼ϵh−1 d1(u) = d(u), thus we have d̂(u) ∼ϵh
d(u). And682

d̂(v) = 0 = d(v). Since k̂ = k̂1 ∼δh−1 k1 = k, we get k ∼δh
k̂. So (d̂, k̂) is h-close to (d, k).683

Join Node. If α is a join node with children α1 and α2, then we have a certificate (d1, k1) ∈684

Rα1 and (d2, k2) ∈ Rα2 , where for all v ∈ Xα, d1(v) + d2(v) = d(v) and k1 + k2 = k.685

By the induction hypothesis, there exist (d̂1, k̂1) ∈ R̂α1 and (d̂2, k̂2) ∈ R̂α2 which are686

(h − 1)-close to (d1, k1) and (d2, k2) respectively. Note that (d̂1, k̂1), (d̂2, k̂2) is a valid687

certificate, so there exists (d̂, k̂) ∈ R̂α, where for all v ∈ Xα, d̂(v) = [d̂1(v) + d̂2(v)]ϵ and688

k̂ = k̂1 + k̂2. By Lemma 9, for all v ∈ Xα, d̂(v) ∼ϵh
d(v) and k̂ ∼δh

k.689

Forgetting Node. If α is a forgetting v node with child α1, then we have a certificate690

(d1, k1) ∈ Rα1 which satisfies one of the following conditions:691

(1) d1(v) = |N(v) ∩ Yα|, d1 \ v = d and k1 = k.692

(2) There exist ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]693

such that for all u ∈ ∆(v), d1(u) = d(u) − 1 and for all u ∈ Xα1 \ (∆(v) ∪ {v}), d1(u) =694

d(u), d1(v) = A and k1 = k − 1.695

Notice that these two conditions just correspond to the recursive rules with the same696

index. By the induction hypothesis, there exists an approximate counterpart of the697

certificate. To be specific, there exists (d̂1, k̂1) ∈ R̂α1 which is (h − 1)-close to (d1, k1).698

Consider two sub-cases:699

Type (1) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = |N(v) ∩ Yα|,700

we have d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|, which means (1a) is satisfied. Let (dt, |Yα1 |) be701

the tested pair in (1b). By the definition of (dt, |Yα1 |), for all u ∈ Xα1 \ {v}, dt(u) =702

⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ ⌈(1 + ϵh−1)d1(u)/(1 + ϵh−1)⌉ = d1(u), and dt(v) = d1(v) =703

|N(v) ∩ Yα|. Also observe that k1 ≤ |Yα1 |. Thus by Lemma 8, (dt, |Yα1 |) ∈ Rα1 , which704

means (1b) is satisfied. As (1a), (1b) are satisfied, there exists (d̂, k̂) ∈ R̂α, where705

d̂ = d̂1\v, k̂ = k̂1. Finally, observe that for all u ∈ Xα, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u).706

k = k1 ∼δh−1 k̂1 = k̂. So (d, k) and (d̂, k̂) are h-close.707

Type (2) certificate. As (d̂1, k̂1) is (h − 1)-close to (d1, k1) and d1(v) = A, we708

have d̂1(v) ≥ A/(1 + ϵh−1), which means (2a) is satisfied. Let (dt, |Yα1 |) be the tested709

pair in (2b), i.e. for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ and dt(v) = A.710

Similarly we have that d1(u) ≥ dt(u) for all u ∈ Xα while k1 ≤ |Yα1 |. Thus by Lemma711

8, (dt, |Yα1 |) ∈ Rα1 , which means (2b) is satisfied. As (2a), (2b) are satisfied, there712

exists (d̂, k̂) ∈ R̂α, where d̂(u) = [d̂1(u) + 1]ϵ for all u ∈ Xα \ ∆(v), d̂(u) = d̂1(u) for713

all u ∈ ∆(v), and k̂ = k̂1 + 1. For each u ∈ ∆(v), d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u); for714

all u ∈ Xα \ ∆(v), d(u) ∼ϵh
d̂(u) by Lemma 9; k − 1 = k1 ∼δh−1 k̂1 = k̂ − 1 and thus715

k ∼δh
k̂. So (d, k) and (d̂, k̂) are h-close.716

Proof of (B)717

Now we have some (d̂, k̂) ∈ R̂α and we aim to show the existence of some (d, k) ∈ Rα which718

is h-close to (d̂, k̂).719
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Introducing v Node. Suppose α is an introducing v node with α1 as its child, then by the720

the recursive rules we have a certificate (d̂1, k̂1) ∈ R̂α1 , where d̂1 = d̂ \ v, k̂1 = k̂. By721

induction hypothesis, there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). (d1, k1)722

is a valid certificate, so there exists (d, k) ∈ Rα, where d \ v = d1, d(v) = 0 and k = k1.723

For all u ∈ Xα \ {v}, d(u) = d1(u) ∼ϵh−1 d̂1(u) = d̂(u) so d̂(u) ∼ϵh
d(u); d̂(v) = 0 = d(v);724

k = k1 ∼δh−1 k̂1 = k̂, so k ∼δh
k̂.725

Join Node. If α is a join node with α1 and α2 as its children, then we have a certificate726

(d̂1, k̂1) ∈ R̂α, (d̂2, k̂2) ∈ R̂α2 , where for all v ∈ Xα, [d̂1(v)+ d̂2(v)]ϵ = d̂(v) and k̂1 + k̂2 = k̂.727

By induction hypothesis, there exist (d1, k1) ∈ Rα1 , (d2, k2) ∈ Rα2 which are (h − 1)-close728

to (d̂1, k̂1) and (d̂2, k̂2) respectively. Since (d1, k1), (d2, k2) is a valid certificate, we have729

there exists (d, k) ∈ Rα, where for all v ∈ Xα, d(v) = d1(v) + d2(v) and k = k1 + k2. By730

Lemma 9, for all v ∈ Xα, d(v) ∼ϵh
d̂(v). And k ∼δh

k̂.731

Forgetting v Node. If α is a forgetting v node, then we have a certificate (d̂1, k̂1) ∈ R̂α1732

and a tested pair (dt, |Yα1 |) ∈ Rα1 in (1b) or (2b) with one of the following types:733

(1) d̂1(v) ∼ϵh−1 |N(v) ∩ Yα|; d̂1 \ v = d̂; k̂1 = k̂; dt(v) = |N(v) ∩ Yα|;734

(2) there exists ∆(v) ⊆ N(v) ∩ Xα and A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|]735

such that for all u ∈ ∆(v), d̂(u) = [d̂1(u) + 1]ϵ; for all u ∈ Xα1 \ ∆(v) ∪ {v}, d̂1(u) =736

d̂(u); d̂1(v) ≥ A/(1 + ϵh−1); k̂1 = k̂ − 1; dt(v) = A.737

In both types, for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉. Notice that these two738

types just correspond to the recursive rules with the same index. By induction hypothesis,739

there exists (d1, k1) ∈ Rα1 which is (h − 1)-close to (d̂1, k̂1). By the definition of (h − 1)-740

closeness we have that for every u ∈ Xα1 \ {v}, d1(u) ≥ ⌈d̂1(u)/(1 + ϵh−1)⌉ = dt(u).741

Consider the two cases:742

Type (1) certificate and tested pair. In this case dt(v) = |N(v) ∩ Yα| and d̂1(v) ∼ϵh−1743

|N(v) ∩ Yα|. Notice that for all u ∈ Xα1 \ {v}, dt(u) = ⌈d̂1(u)/(1 + ϵh−1)⌉ ≤ d1(u).744

Consider the pair (dt, k∗
1) where k∗

1 = k1 + |N(v)∩Yα|−d1(v). As (d1, k1), (dt, |Yα1 |) ∈745

Rα1 , by Lemma 8 and 11, we have (dt, k∗
1) ∈ Rα1 . This is a valid certificate as746

dt(v) = |N(v) ∩ Yα|. So there exists (d, k) ∈ Rα, where d = dt \ v and k = k∗
1 .747

Then we show that (d, k) is h-close to (d̂, k̂). Notice that k̂ = k̂1 ∼δh−1 k1, k = k∗
1 =748

k1 + |N(v) ∩ Yα| − d1(v). As d1(v) ∼ϵh−1 d̂1(v), thus d1(v) ≥ |N(v) ∩ Yα|/(1 + ϵh−1)2,749

thus we have that |N(v) ∩ Yα| − d1(v) ≤ ((1 + ϵh−1)2 − 1)d1(v) ≤ 3ϵh−1k1. Notice that750

d1(v) ≤ k1 by Lemma 10. So k ∼3ϵh−1 k1 ∼δh−1 k̂1 = k̂. As (1 + 3ϵh−1)(1 + δh−1) =751

1 + (4h + 6)(h − 1)ϵ + 24h(h − 1)2ϵ2 ≤ 1 + 4h(h + 1)ϵ, we have k̂ ∼δh
k.752

For all u ∈ Xα, we just have d(u) = dt(u) ∼ϵh−1 d̂1(u) = d̂(u).753

Type (2) certificate and tested pair. In this case, there exists ∆(v) ⊆ N(v) ∩ Xα and754

A ∈ [|N(v) ∩ Yα| − c(v) + |∆(v)|, |N(v) ∩ Yα|] such that dt(v) = A. Still we have755

that for all u ∈ Xα1 \ {v}, dt(u) ≤ d1(u). Let k∗
1 := k1 + max{0, A − d1(v)}. As756

(d1, k1), (dt, |Yα1 |) ∈ Rα1 , by Lemma 8 and 11, we have (dt, k∗
1) ∈ Rα1 . This is a valid757

certificate as dt(v) = A. So there exists (d, k) ∈ Rα, where for all u ∈ Xα \∆(v), d(u) =758

dt(u), for all u ∈ ∆(v), d(u) = dt(u) + 1 and k = k∗
1 + 1.759

We use the same idea to show k̂ ∼δh
k. Still, we have k1 ≥ d1(v) ≥ A/(1 + ϵh−1)2. So760

k∗
1 = k1 + max{0, A − d1(v)} ≤ 3ϵh−1k1 and obviously, k∗

1 ≥ k1. So k∗
1 ∼3ϵh−1 k1. As761

k̂ − 1 = k̂1 ∼δh−1 k1, we have k̂ − 1 ∼δh
k∗

1 = k − 1. Thus k̂ ∼δh
k.762

For all u ∈ Xα \ ∆(v), we have d(u) = d1
∗(u) ∼ϵh−1 d̂1(u) = d̂. For all u ∈ ∆(v), we763

have d(u) − 1 = d1
∗(u) ∼ϵh−1 d̂1(u) and d̂(u) = [d̂1(u) + 1]ϵ, by Lemma 9 we have764

d(u) ∼ϵh
d̂(u).765



H.Chu and B.Lin 23:19

C Proof of Theorem 14766

We first prove that for any bag Xα in a tree decomposition for a graph G = (V, E), vertex sets767

Yα and V \ Vα are disconnected in G[V \ Xα] i.e. Xα separates V \ Xα into two disconnected768

parts Yα and V \ Vα. Assume they are connected, then there exists u ∈ Yα and v ∈ V \ Vα769

such that (u, v) ∈ E. So there exists some bag containing both u and v. This implies that770

the nodes whose assigned bags containing u or v forms a subtree in the tree decomposition.771

However, X divides apart some nodes whose assigned bags containing u or v, a contradiction.772

Since (T, X ) is a tree decomposition for GI [VI \D], a corollary is that for any bag Xα ∈ X ,773

Xα ∪ D separates VI \ (D ∪ Xα) into disconnected parts Yα and VI \ (Vα ∪ D).774

Now let’s analyze Algorithm 1. We use induction. Firstly let’s consider basic cases. If775

(I, D) has a minimum solution of size at most l, then the algorithm returns at line 8 an776

optimal solution. If (I, D) contains no solution, which is equivalent to VI is not a solution777

due to monotonicity, then any leaf node is not l-good since Yα′ = ∅ for a leaf node α′ and778

the algorithm returns at line 12. So in these cases, the algorithm is correct. In the remaining779

case, the algorithm picks a node α which is not l-good at line 10, then it adds some vertices780

to the final output and creates a new instance to make a recursive call. Since α is the node781

which is not l-good node with minimum height, its children are all l-good. Let the optimal782

solution for (I, D) be S∗. Let S := Solve((I, D ∪ F ), (T ′, X ), l) and let S′ denote the optimal783

solution for (I, D ∪ F ).784

▶ Lemma 18. As the problem is monotone and splittable, we have the following:785

(i) S∗ ∩ Yα is a solution for (I, VI \ Yα).786

(ii) For all αc a child of α, S∗ ∩ Yαc is a solution for (I, VI \ Yαc);787

(iii) S∗ \ F is a solution for (I, D ∪ F );788

(iv) E′ ∪ S is a solution for (I, D).789

Proof. (i) By the definition of partial instances, S∗ ∪D is a solution for I. By monotonicity,790

S∗ ∪ D ∪ (VI \ Yα) = S∗ ∩ Yα ∪ (VI \ Yα) is also a solution for I. So S∗ ∩ Yα is a solution791

for (I, VI \ Yα) according to the definition of partial solution.792

(ii) Similarly as above, by monotonicity, S∗ ∪ D ∪ (VI \ Yαc
) = S∗ ∩ Yαc

∪ (VI \ Yαc
) is also793

a solution for I. So S∗ ∩ Yαc
is a solution for (I, VI \ Yαc

).794

(iii) By monotonicity, S∗ ∪D∪F is also a solution for I. So S∗ \F is a solution for (I, D∪F ).795

(iv) We need to use the property that Φ is splittable. By the algorithm, E′ =
⋃

αc∈N−
α

Xαc
∪796 ⋃

αc∈N−
α

Eαc and F =
⋃

αc∈N−
α

Vαc . Let X ′ denote ∪αc∈N−
α

Xαc . To use the property797

that Φ is splittable, observe that D ∪ X ′ is a separator. Each Yαc
is an isolated part798

(not connected to the remaining graph) in GI [VI \ (D ∪ X ′)]. The remaining part in799

GI [VI \ (D ∪ X ′)] is thus isolated and it’s VI \ (D ∪ X ′ ∪
⋃

αc∈N−
α

Yαc
) = VI \ (D ∪ F ).800

Because each Eαc
is a solution for (I, VI \ Yαc

), and by induction hypothesis, S is a801

solution for (I, D ∪ F ), we get that Φ is splittable implies X ′ ∪ D ∪ S ∪
⋃

αc∈N−
α

Eαc
=802

E′ ∪ D ∪ S is a solution for I. So E′ ∪ S is a solution for (I, D).803

◀804

By induction we assume that |S| ≤ (1 + (w + 1)/(l + 1))|S′|. The approximation ratio is805

|S ∪ E′|
|S∗|

≤
|S| +

∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F | + |S∗ \ F |
.806

807

Since |S|/|S∗ \ F | ≤ |S|/|S′| ≤ 1 + (w + 1)/(l + 1), we only need to show (
∑

αc∈N−
α

|Eαc | +808

|
⋃

αc∈N−
α

Xαc
|)/|S∗ ∩ F | ≤ 1 + (w + 1)/(l + 1). Notice that by the definition, Yα ⊆ F . Since809
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(a) T in a tree decomposition
(T, X ).

(b) The vertex sets about α and
αc. Dotted part is Yα

(c) Eαc is added, and F is the
lined part.

Figure 1 Venn diagram of sets defined in Algorithm 1

α is not l-good, (i) implies that |S∗ ∩ F | ≥ |S∗ ∩ Yα| ≥ l + 1. By (ii), for all αc ∈ N−
α ,810

|Eαc
| ≤ |S∗ ∩ Yαc

|. We have811 ∑
αc∈N−

α
|Eαc

| + |
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
812

=
∑

αc∈N−
α

|Eαc
|

|S∗ ∩ F |
+

|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
813

≤
∑

αc∈N−
α

|Eαc |∑
αc∈N−

α
|S∗ ∩ Yαc

|
+

|
⋃

αc∈N−
α

Xαc |
|S∗ ∩ F |

(Yαc
’s are disjoint subsets of F )814

≤1 +
|
⋃

αc∈N−
α

Xαc
|

|S∗ ∩ F |
(By (ii) and the definition of Eαc

)815

≤1 +
|
⋃

αc∈N−
α

Xαc |
l + 1 (By |S∗ ∩ F | ≥ l + 1).816

817

In a nice tree decomposition, the only case that |N−
α | > 1 is that α is a join node, however818

in this case, the bags of its two children are the same. So |
⋃

αc∈N−
α

Xαc
|/(l + 1) + 1 ≤819

(w + 1)/(l + 1) + 1. The approximation ratio follows. It’s easy to see the algorithm makes at820

most nO(1) recursive calls, so the running time is f(l, w, n)nO(1). And thus Theorem 14 is821

proved.822
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