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Introduction

Many hard problems have efficient algorithm when the input 
graph’s treewidth is at most 𝒘𝒘.

𝑓𝑓 𝑤𝑤 𝐺𝐺 𝑂𝑂 1 -time (FPT).

Treewidth: A measure of how “tree-like” the graph is. 
(Introduced by Robertson and Seymour.)



Introduction

Some problems are hard even when the input graph’s treewidth is 
small.

This Work:  𝑓𝑓 𝑤𝑤 𝐺𝐺 𝑂𝑂 1 -time approximation for three such problems.

CVC: Capacitated Vertex Cover
VDS: Vector Dominating Set
TSS: Target Set Selection
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Treewidth-Definitions

Definition (tree decomposition)

A tree decomposition of a graph 𝐺𝐺 is a pair (𝑇𝑇,𝒳𝒳) such that

• 𝑇𝑇 is a rooted tree and 𝒳𝒳 = 𝑋𝑋𝛼𝛼:𝛼𝛼 ∈ 𝑉𝑉 𝑇𝑇 ,𝑋𝑋𝛼𝛼 ⊆ 𝑉𝑉 𝐺𝐺  is a collection of 
subsets of 𝑉𝑉 𝐺𝐺 ;

• ⋃𝛼𝛼∈𝑉𝑉(𝑇𝑇)𝑋𝑋𝛼𝛼 = 𝑉𝑉(𝐺𝐺);

• For every edge 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺), there exists a 𝑋𝑋𝛼𝛼 ∈ 𝒳𝒳 such that 𝑒𝑒 ⊆ 𝑋𝑋𝛼𝛼 ;

• For every vertex 𝑣𝑣 ∈ 𝑉𝑉(𝐺𝐺), the set 𝛼𝛼 ∈ 𝑉𝑉 𝑇𝑇 : 𝑣𝑣 ∈ 𝑋𝑋𝛼𝛼  induces a subtree 
of 𝑇𝑇.

Tree decomposition width: max
𝛼𝛼∈𝑉𝑉 𝑇𝑇

𝑋𝑋𝛼𝛼 − 1

Treewidth of 𝐺𝐺: minimum width over all tree decompositions of 𝐺𝐺

𝑋𝑋𝛼𝛼 ∈ 𝒳𝒳: ‘bag’



Treewidth-Examples

Tree has treewidth 1

𝑘𝑘-Clique has treewidth 𝑘𝑘 − 1 𝑘𝑘 by 𝑘𝑘 grid has treewidth 𝑘𝑘

Cycle has treewidth 2

Control flow graphs have small treewidth



Treewidth-Nice Tree Decomposition

A tree decomposition T is nice if any node 𝛼𝛼 ∈ 𝑉𝑉(𝑇𝑇) is one of the following:

Any tree decomposition can be transformed into a nice tree decomposition in 
polynomial time, with width 𝑤𝑤 kept.



Treewidth-Applications

Treewidth can be computed in FPT time.

• [Bodlaender, 1996]: exact, 2𝑂𝑂 𝑤𝑤3 𝑛𝑛𝑂𝑂 1

• [Korhonen, 2021]: 2 + 𝑜𝑜 1 -approximation, 2𝑂𝑂 𝑤𝑤 𝑛𝑛𝑂𝑂 1

Theorem [Courcelle, 1990]
Every graph property definable in monadic second-order logic can 
be decided in FPT time.

Example:
3-COLORING
∃𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 ⊆ 𝑉𝑉
∀𝑣𝑣 ∈ 𝑉𝑉 𝑣𝑣 ∈ 𝐶𝐶1 ∨ 𝑣𝑣 ∈ 𝐶𝐶2 ∨ 𝑣𝑣 ∈ 𝐶𝐶3
∧ ∀𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢, 𝑣𝑣 → ¬ 𝑢𝑢 ∈ 𝐶𝐶1 ∧ 𝑣𝑣 ∈ 𝐶𝐶1 ∧ ¬ 𝑢𝑢 ∈ 𝐶𝐶2 ∧ 𝑣𝑣 ∈ 𝐶𝐶2 ∧ ¬ 𝑢𝑢 ∈ 𝐶𝐶3 ∧ 𝑣𝑣 ∈ 𝐶𝐶3



Hard Problems on Bounded Treewidth Graphs

𝑾𝑾[𝟏𝟏]-hard problems parameterized by treewidth 𝑤𝑤:

• Cover & domination: Capacitated Vertex Cover, Capacitated Dominating Set, 
Vector Dominating Set, etc.

• Coloring: Equitable Coloring, List Coloring, etc.

• Others: Target Set Selection, Constraint Satisfaction Problem, etc.

Our approach: Combine Approximation and Parameterization.

Unlikely to have 𝑓𝑓 𝑤𝑤 𝐺𝐺 𝑂𝑂 1 -time Algorithm 



Our Results

Problem Running time Approximation ratio

CVC FPT
1 +

1
𝑤𝑤 log𝑛𝑛

𝑂𝑂 1

TSS 𝑛𝑛𝐶𝐶+𝑂𝑂 1
1 +

𝑤𝑤 + 1
𝐶𝐶 + 1

VDS FPT
1 +

1
𝑤𝑤 log log𝑛𝑛

𝑂𝑂 1
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TSS-Introduction

Target Set Selection
Input: Given graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) and a threshold function 𝑡𝑡:𝑉𝑉 → ℕ. 
Goal: Find the smallest set 𝑆𝑆 ⊆ 𝑉𝑉 that can activate 𝑉𝑉.

Application: 
Spread information in a social network

1 1 2

3 3 1

1 1 4

1 1 2

3 3 1

1 1 4

1 1 2

3 3 1

1 1 4

𝑢𝑢

𝑣𝑣

Activation closure of {𝑢𝑢, 𝑣𝑣}



TSS-Introduction

Our result: For any 𝐶𝐶 ∈ ℕ, an algorithm for TSS:
• running time 𝑛𝑛𝐶𝐶+𝑂𝑂(1) 
• approximation ratio 1 + 𝑤𝑤+1

𝐶𝐶+1
.

Parameter Hardness Approximation
ratio

Hypothesi
s

Reference

𝑘𝑘: solution size 𝑊𝑊 𝑃𝑃 -hard 1 [Abrahamson, 1995]

𝑛𝑛𝜔𝜔 1 2log1−𝜖𝜖 𝑛𝑛 𝑃𝑃 ≠ 𝑁𝑁𝑁𝑁 [Chen, 2009] [Charikar, 2016]

𝑤𝑤: treewidth 𝑛𝑛Ω 𝑤𝑤 1 𝐸𝐸𝐸𝐸𝐸𝐸 [Ben-Zwi, 2011]

Hardness of TSS



TSS-Observation

Lemma
Every bag 𝑋𝑋 ∈ 𝒳𝒳 in a tree decomposition 𝑇𝑇,𝒳𝒳 is a separator of the original graph.

Approx. Ratio:     𝑿𝑿 +𝑪𝑪
𝑪𝑪

If the opt solution has 
C vertices in:

Then we can pick X and the C-
size solution S as a solution for 𝑋𝑋

𝑋𝑋

𝑆𝑆

𝑋𝑋

𝑆𝑆

C-size solution

𝑆𝑆



TSS-Observation

Lemma
Every bag 𝑋𝑋 ∈ 𝒳𝒳 in a tree decomposition 𝑇𝑇,𝒳𝒳 is a separator of the original graph.

Approx. Ratio:     𝑿𝑿 +𝑪𝑪
𝑪𝑪

If the opt solution has 
C vertices in:

Then we can pick X and the C-
size solution S as a solution for

C-size solution

𝑋𝑋

𝑆𝑆

𝑋𝑋

𝑆𝑆

𝑋𝑋

𝑆𝑆

Can be tested in 𝒏𝒏𝑪𝑪+𝟏𝟏-time



TSS-Generalization

Observations: 
• TSS is monotone
• TSS is splittable

Pick X∪S

Approx. Ratio=
|𝑋𝑋∪𝑆𝑆|
𝐶𝐶

≤ (1 + 𝑤𝑤+1
𝐶𝐶

)

𝑋𝑋

C-size solution

𝑆𝑆

Lowest node without 
C-size solution

If X is a separator of G and each Ci

is a solution for G[Vi], then 
• XUC1UC2…Cl is a solution for G

splittable

𝑉𝑉1

𝑉𝑉2

𝑉𝑉𝑙𝑙𝑋𝑋𝐶𝐶1 𝐶𝐶𝑙𝑙

𝐶𝐶2



A General Approximation Algorithm

TSS: 𝑓𝑓 𝐶𝐶,𝑤𝑤,𝑛𝑛 = 𝑛𝑛𝐶𝐶+𝑂𝑂(1) Set 𝐶𝐶 a constant
𝑛𝑛𝐶𝐶+𝑂𝑂 1  time,
1 + 𝑤𝑤+1

𝐶𝐶+1
-ratio

Main Theorem 1 (informal):

• Monotone
• Splittable
• Algorithm 𝑨𝑨: ‘finding 

C-sized solution’, 
running time 𝑓𝑓(𝐶𝐶,𝑤𝑤,𝑛𝑛)

𝑓𝑓 𝐶𝐶,𝑤𝑤,𝑛𝑛 𝑛𝑛𝑂𝑂(1)-time, 
1 + 𝑤𝑤+1

𝐶𝐶+1
-ratio algorithm



Application to VDS

Hardness:
• Generalizes Dominating Set.
• 𝑊𝑊[1]-hard parameterized by treewidth.

Vector Dominating Set
Input: 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), a threshold function 𝑡𝑡:𝑉𝑉 → ℕ. 
Goal: Find the smallest set 𝑆𝑆 that ∀𝑣𝑣 ∈ 𝑉𝑉 ∖ 𝑆𝑆, 𝑁𝑁 𝑣𝑣 ∩ 𝑆𝑆 ≥ 𝑡𝑡(𝑣𝑣).

VDS: 
𝑓𝑓 𝐶𝐶,𝑤𝑤,𝑛𝑛 = 2𝑂𝑂 𝑤𝑤𝐶𝐶2 log 𝐶𝐶 𝑛𝑛𝑂𝑂 1

[Raman, 2008]
Set 𝐶𝐶 = 𝑤𝑤2 log log 𝑛𝑛

log log log 𝑛𝑛

0.5 𝐹𝐹𝐹𝐹𝐹𝐹 time, 
1 + 1

𝑤𝑤 log log 𝑛𝑛 Ω 1 -ratio



Limitation

Some problems are not splittable!
• Capacitated Vertex Cover
• Capacitated Dominating Set
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Capacitated Vertex Cover-Introduction

Capacitated Vertex Cover(CVC)
Input: Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), a capacity function 𝑐𝑐:𝑉𝑉 → ℕ. 
Goal: Find a min vertex set 𝑆𝑆 and a mapping 𝑀𝑀:𝐸𝐸 → 𝑆𝑆 such 
that 
• ∀𝑣𝑣 ∈ 𝑆𝑆, 𝑀𝑀−1 𝑣𝑣 ≤ 𝑐𝑐(𝑣𝑣)
• for each 𝑒𝑒 ∈ 𝐸𝐸,𝑀𝑀 𝑒𝑒 ∈ 𝑒𝑒. 

• CVC is 𝑊𝑊[1]-hard with parameter 𝑤𝑤.
• [Lampis 2014]: find a ‘solution’ of OPT size, but relax 

capacity constraint to 𝑀𝑀−1 𝑣𝑣 ≤ (1+𝜖𝜖) ⋅ 𝑐𝑐(𝑣𝑣). 

Question:
Can we find a solution of (1+𝜖𝜖)OPT size and satisfies all constraints?

mapped to 
=covered by



Naïve DP for CVC

Naïve DP:
• Let 𝑅𝑅𝛼𝛼 ≔ 𝑑𝑑,𝑘𝑘 :𝑑𝑑:𝑋𝑋𝛼𝛼 → ℕ,𝑘𝑘 ∈ ℕ . 
• 𝑑𝑑,𝑘𝑘 records a partial solution on graph 𝐺𝐺 𝑌𝑌𝛼𝛼
• 𝑘𝑘 ∈ ℕ is the solution size.
• For each 𝑣𝑣 ∈ 𝑋𝑋𝛼𝛼, ∃𝑑𝑑 𝑣𝑣  of its incident edges can be 

covered by the solution. 
• Compute 𝑅𝑅𝛼𝛼 by DP.

Problem: 𝑅𝑅𝛼𝛼 has 𝑛𝑛Θ(𝑤𝑤) records
Partial Solution S
d(⋅)=[2,1,0,1]

𝑋𝑋𝛼𝛼
𝑉𝑉𝛼𝛼

𝑌𝑌𝛼𝛼 = 𝑉𝑉𝛼𝛼 ∖ 𝑋𝑋𝛼𝛼

⇒ 𝑑𝑑 𝑣𝑣 ≤ 𝑘𝑘



Lampis’ Idea

Lampis’ Idea: compressing DP table

𝑛𝑛𝑤𝑤+𝑂𝑂(1) → log 𝑛𝑛
𝜖𝜖

𝑤𝑤+𝑂𝑂 1

• Pick 𝜖𝜖 ∈ (0,1)
• Replace every 𝑥𝑥 ∈ [𝑛𝑛] by 𝑥𝑥𝑥 with 1 + 𝜖𝜖 𝑥𝑥′ ≤ 𝑥𝑥 < 1 + 𝜖𝜖 𝑥𝑥′

• Reduce [𝑛𝑛] to [log1+𝜖𝜖 𝑛𝑛]

Error
increase 

• Use 𝑂𝑂(log𝑛𝑛) depth Tree-decomposition
• Set 𝜖𝜖 = 1/poly log𝑛𝑛



Lampis’ Idea
Lampis uses this framework to get following results:
• find a ‘solution’ of OPT size, but relax capacity constraint to 
𝑀𝑀−1 𝑣𝑣 ≤ (1+𝜖𝜖) ⋅ 𝑐𝑐(𝑣𝑣).

We say yes for CVC.

Question:
Can we find a solution of (1+𝜖𝜖)OPT size and satisfies all constraints?



Approximation DP Algorithm-Intuition

Approx. DP:
• Let �𝑅𝑅𝛼𝛼 be an approximate sketch of 𝑅𝑅𝛼𝛼.
• Compute �𝑅𝑅𝛼𝛼 by DP

Recall:

Problem
Record 𝑑̂𝑑, �𝑘𝑘 ∈ �𝑅𝑅𝛼𝛼 may violate constraint, how to modify it to obtain 
a good one?



Modify Partial Solution

Lemma
if we want to modify a partial solution (𝑑𝑑, 𝑘𝑘) to (𝑑𝑑𝑚𝑚,𝑘𝑘 + 𝑝𝑝) where 𝑑𝑑𝑚𝑚 ∖ 𝑣𝑣 =
𝑑𝑑 ∖ 𝑣𝑣,𝑑𝑑𝑚𝑚 𝑣𝑣 = 𝑑𝑑 𝑣𝑣 + 𝑝𝑝 for a fixed v, we only need to test if (𝑑𝑑𝑚𝑚,∞) is feasible.

A simple case:
• 𝑑𝑑 ∖ 𝑣𝑣 = 𝑑𝑑𝑚𝑚 ∖ 𝑣𝑣,𝑑𝑑𝑚𝑚 𝑣𝑣 = 𝑑𝑑 𝑣𝑣 + 𝑝𝑝 for a fixed v
• we want to modify a partial solution (𝑑𝑑,𝑘𝑘) to (𝑑𝑑𝑚𝑚,𝑘𝑘 + 𝑝𝑝)

Lemma
We can test in polynomial time test if (𝑑𝑑𝑚𝑚,∞) is feasible for any 𝑑𝑑.

Proof: 
Use network flow.



Modify Partial Solution-Augmenting

Suppose we want d(𝑣𝑣0)→d(𝑣𝑣0)+1

#edge covered by 𝑣𝑣0 -= 1
#edge covered by 𝑣𝑣𝑙𝑙 += 1

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣𝑙𝑙−1 𝑣𝑣𝑙𝑙…An augmentable path

𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣𝑙𝑙−1 𝑣𝑣𝑙𝑙…
Possible case:
𝑣𝑣𝑙𝑙 ∉ solution

Solution size += 1

Lemma
if we want to modify a partial solution (𝑑𝑑, 𝑘𝑘) to (𝑑𝑑𝑚𝑚,𝑘𝑘 + 𝑝𝑝) where 𝑑𝑑𝑚𝑚 ∖ 𝑣𝑣 =
𝑑𝑑 ∖ 𝑣𝑣,𝑑𝑑𝑚𝑚 𝑣𝑣 = 𝑑𝑑 𝑣𝑣 + 𝑝𝑝 for a fixed v, we only need to test if (𝑑𝑑𝑚𝑚,∞) is feasible.



Modify Partial Solution-Barrier and Solution

Problem:
How to show that good approx. of 𝑑𝑑(𝑣𝑣) can lead to good 
approx. of 𝑘𝑘 ? 

A trick: 
𝑑𝑑(𝑣𝑣): the number of edges NOT covered⇒ 𝑑𝑑 𝑣𝑣 ≤ 𝑘𝑘.

Error accumulation: 𝜖𝜖ℎ𝑑𝑑 𝑣𝑣 + 𝑘𝑘 ≤ 1 + 𝜖𝜖ℎ 𝑘𝑘

Only ≤ 1 vertex needs to be 
modified! (nice tree decomposition)
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Conclusion

Two methods to handle approx. error during DP.
• Estimate opt solution in subtree + remove the bag
• Compress DP-table + modify solution

Main message:
• Combining Approximation and DP on Tree Decomposition is a 

promising research direction.

Open problem
• Constant FPT (In)approximability for TSS parameterized by tree 

width.
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