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INntroduction

FW)|G|°M -time (FPT).

Many hard problems have efficient algorithm when the input
graph’s treewidth is at most w.

Treewidth: A measure of how “tree-like” the graph Is.
(Introduced by Robertson and Seymour.)




INntroduction

Some problems are hard even when the input graph’s treewidth is
small.

This Work: f(w)|G|°™ -time approximation for three such problems.

{}

CVC: Capacitated Vertex Cover
VDS: Vector Dominating Set
TSS: Target Set Selection
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Treewidth-Definitions

ﬁefinition (tree decomposition) \

A tree decomposition of a graph G is a pair (T, X) such that @ (B) @

 Tisarootedtreeand X ={X,:a € V(T),X, € V(G)}is a collection of
subsets of V(G): (C ®,

Ugevm Xea = V(G); X, € X: ‘bag’
* Forevery edge e € E(G), there exists a X, € X such that e © X,;

* For every vertex v € V(G), the set {a € V(T): v € X, } induces a subtree
of T.

Tree decomposition width: max |X,| —1
a€eV(T)

Treewidth of G: minimum width over all tree decompositions of G




Treewidth-Examples

Tree has treewidth 1 fg\i &
&% &

) S
s °8

k-Clique has treewidth k — 1 k by k grid has treewidth k

Control flow graphs have small treewidth



Treewidth-Nice Tree Decomposition

A tree decomposition T is nice if any node a € V(T) is one of the following:

Leaf Introduce  Forget Join

Tesee

Any tree decomposition can be transformed into a nice tree decomposition in
polynomial time, with width w kept.




Treewidth-Applications

Treewidth can be computed in FPT time.
+ [Bodlaender, 1996]: exact, 2°(W*)n0®)
* [Korhonen, 2021]: 2 + o(1)-approximation, 2°W)no)

Theorem [Courcelle, 1990]

Every graph property definable in monadic second-order logic can
be decided in FPT time.

Example:
3-COLORING
3C,,Cy, C3 SV
(VweV@wEC,VVEC,VVE (3))

/\(Vu,vEVadj(u,v) — (—l(ue CLANVECON-(UuEC,ANvEC,))AN-(UEC3AVE C3)))



Hard Problems on Bounded Treewidth Graphs

Unlikely to have f(W)IGIO(l)—time Algorithm

W|1]-hard problems parameterized by treewidth w:

* Cover & domination: Capacitated Vertex Cover, Capacitated Dominating Set,
Vector Dominating Set, etc.

* Coloring: Equitable Coloring, List Coloring, etc.
* Others: Target Set Selection, Constraint Satisfaction Problem, etc.

Our approach: Combine Approximation and Parameterization.



Our Results

Problem Running time Approximation ratio
CVC FPT 1 0(1)
1 ( )
wlogn
TSS nC+0o(1) w+1
1+——
C+1
VDS FPT

1 0(1)
1+
w loglogn
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1SS-Introduction

Target Set Selection

Input: Given graph G = (V, E) and a threshold function t:V — N,
Goal: Find the smallest set S € V that can activate V.

y Activation closure of {u, v}

4 O—C0—0©@ OO 0O OO0 A
€ @ == @ @ == G @
o—0—6m O o016 0o 040

- v /

Application:

Spread information In a social network



1SS-Introduction

Hardness of TSS

Parameter Hardness Approximation | Hypothesi | Reference
ratio S
k: solution size | W[P]-hard 1 [Abrahamson, 1995]
n®® olog'~€n P # NP |[Chen, 2009] [Charikar, 2016]
w: treewidth n(Vw) 1 ETH | [Ben-Zwi, 2011]

C+0(1)

* approximation ratio 1 +

Our result: For any C € N, an algorithm for TSS:
* running time n

w+1

C+1




1SS-0Observation

Lemma
{Every bag X € X in a tree decomposition (T, X) is a separator of the original graph. J

If the opt solution has
C vertices In:

C-size solution

Then we can pick X and the C-

size solution S as a solution for % f

| X|+C
C

Approx. Ratio:




1SS-0Observation

Lemma
{Every bag X € X in a tree decomposition (T, X) is a separator of the original graph. J

{r — Can be tested in n¢*1-time - ~
, If the opt solution has

\

!

. . I

1 C vertices in: |
!
I

C-size solution

Then we can pick X and the C-

size solution S as a solution for % f

| X|+C
C

Approx. Ratio:




1SS-Generalization

Lowest node without
C-size solution

Observations:
* TSS Is monotone
* TSS Is splittable

/ splittable \
) &>

C-size soluti

Pick XUS
If X Is a separator of G and each Ci
Is a solution for G[Vi], then

K. XUC1UC2:--Ci Is a solution for G/

| XUS| w+1

Approx. Ratio=

c S(1+T)




A General Approximation Algorithm

Main Theorem 1 (informal):

* Monotone

- Splittable f(C,w,n)n°D _time,

* Algorithm A4: ‘finding
C-sized solution’,
running time f(C,w,n)

w+1 : .
1+ . ratio algorithm

n¢+toM time,

w+1 .
1 -
+ 1 ratio

TSS: f(C, W, 7’1) — TlC+O(1) Set C a constant >



Application to VDS

Vector Dominating Set
Input: ¢ = (V,E), a threshold function t:V — N,
Goal: Find the smallest set S that Vv € V\ S, IN(v) N S| = t(v).

Hardness:
* Generalizes Dominating Set.
 W]1]-hard parameterized by treewidth.

VDS: IN_ FPT time,

5
f(C,w,n) = 20(wC?1og €)n0(1) | get ¢ = Wz( log log n ) 1
S logloglogn

[Raman, 2008] 1+ (v Tos log A 1atio




imitation

Some problems are not splittable!
* Capacitated Vertex Cover
* Capacitated Dominating Set
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Capacitated Vertex Cover-Introduction

/Capacitated Vertex Cover(CVC)
Input: Given a graph ¢ = (V, E), a capacity function c:V = N.
Goal: Find a min vertex set S and a mapping M: E — § such
that
e VVES, |M‘1(v)| < c(v)

\* foreache€E,M(e)€Ee.

~

)

* CVCis W|[1]-hard with parameter w.

* [Lampis 2014]: find a ‘solution’ of OPT size, but relax

capacity constraint to [M~1(v)| < (1+¢€) - c(v).

Question:

mapped to
=covered by

Can we find a solution of (1+€)OPT size and satisfies all constraints?



Naive DP for CVC

Naive DP:

e letR, ={(d, k):d:X, » N,k € N}.

* (d, k) records a partial solution on graph G|Y,]

* k € N |s the solution size.

* For each v € X,, 3d(v) of its incident edges can be
covered by the solution. >dw) <k

 Compute R, by DP.

Problem: R, has n®™) records ()

Partial Solution S
d(-)=[2,1,0,1]



ampls’ ldea

Lampis’ Idea: compressing DP table

AWHO(1) (log n)W+O(1)
€

* Pick e € (0,1)
* Replace every x € [n] by x" with (1 + ¥ <x<(1+¢e)*
* Reduce [n] to [log 4e 1]

—

use a ~ b to denote that b/(1 + ) <a< (1+ fy)b_.
Error

increase » Lemma 9. Let a,b,a’,b/ € R,h € NT, ¢, € (0,0.01), a’ ~, a and b’ ~, b. Then we have
la" + Ve ~e,., (a+D).

—

* Use O(logn) depth Tree-decomposition
* Sete = 1/polylogn



ampls’ ldea

Lampis uses this framework to get following results:

* find a ‘solution’ of OPT size, but relax capacity constraint to
M~1(v)] < (1+€) - c(v)

Question:
Can we find a solution of (1+€)OPT size and satisfies all constraints?

We say yes for CVC.



Approximation DP Algorithm-Intuition

Recall: Naive DP for CVC

Naive DP:
+ Let Ry = {(d,k):d: X, - N,k € N}. Q
* (d, k) records a partial solution on graph G[Y,] e
'« k € N is the solution size. v /S(“
h v € Xg, d(v) of its incident edges areto ~ /
the solutici.

Partial Solution S

Approx. DP:

* Let R, be an approximate sketch of R.
« Compute R, by DP

Problem

Record (d, k) € R, may violate constraint, how to modify it to obtain
a good one?



Modify Partial Solution

A simple case:
e d\v=d, \v,d,(v) =d)+p fora fixed v
* we want to modify a partial solution (d, k) to (d,;,, k + p)

Lemma
if we want to modify a partial solution (d, k) to (d,,, k + p) where d,,, \ v =

d\ v,d,(v) =dW)+ p for a fixed v, we only need to test if (d,,, ®) is feasible.

Lemma
We can test in polynomial time test if (d,,, o) is feasible for any d. Proof

Use network flow.



Modity Partial Solution-Augmenting

Lemma
if we want to modify a partial solution (d, k) to (d,, kK + p) where d,, \ v =
d\ v,d,() =d()+ p for afixed v, we only need to test if (d,,, ) is feasible.

Suppose we want d(vg)—d(vg)+1

An augmentable path
Possible case:
@ @ @ @ v; € solution
#edge covered by vy -=1 {

#edge covered by v; +=1 Solution size 4= 1



Modity Partial Solution-Barrier and Solution

Problem:
How to show that good approx. of d(v) can lead to good
approx. of k ?

A trick:
d(v): the number of edges NOT covered= d(v) < k.

. . - TN N
Error accumulation:tepd(v)+ k < (1 + €p)k
Only < 1 vertex needs to be
modified! (nice tree decomposition)
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Conclusion

Main message:
* Combining Approximation and DP on Tree Decomposition is a
promising research direction.

Two methods to handle approx. error during DP.
* Estimate opt solution in subtree + remove the bag
* Compress DP-table + modify solution

Open problem

* Constant FPT (In)approximability for TSS parameterized by tree
width.
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